215 research outputs found

    History Matters: Relating Land-Use Change to Butterfly Species Occurrence

    Get PDF
    Western European landscapes have drastically changed since the 1950s, with agricultural intensifications and the spread of urban settlements considered the most important drivers of this land-use/land-cover change. Losses of habitat for fauna and flora have been a direct consequence of this development. In the present study, we relate butterfly occurrence to land-use/land-cover changes over five decades between 1951 and 2000. The study area covers the entire Swiss territory. The 10 explanatory variables originate from agricultural statistics and censuses. Both state as well as rate was used as explanatory variables. Species distribution data were obtained from natural history collections. We selected eight butterfly species: four species occur on wetlands and four occur on dry grasslands. We used cluster analysis to track land-use/land-cover changes and to group communes based on similar trajectories of change. Generalized linear models were applied to identify factors that were significantly correlated with the persistence or disappearance of butterfly species. Results showed that decreasing agricultural areas and densities of farms with more than 10ha of cultivated land are significantly related with wetland species decline, and increasing densities of livestock seem to have favored disappearance of dry grassland species. Moreover, we show that species declines are not only dependent on land-use/land-cover states but also on the rates of change; that is, the higher the transformation rate from small to large farms, the higher the loss of dry grassland species. We suggest that more attention should be paid to the rates of landscape change as feasible drivers of species change and derive some management suggestion

    Using a robust multi‐settings inference framework on published datasets still reveals limited support for the abundant centre hypothesis: More testing needed on other datasets

    Get PDF
    Aim: The abundant centre hypothesis (ACH) predicts a negative relationship between species abundance and the distance to the geographical range centre. Since its formulation, empirical tests of the ACH have involved different settings (e.g. the distance to the ecological niche or to the geographical range centre), but studies found contrasting support for this hypothesis. Here, we evaluate whether these discrepancies might stem from differences regarding the context in which the ACH is tested (geographical or environmental), how distances are measured, how species envelopes are delineated, how the relationship is evaluated and which data are used. Location: The Americas. Time period: 1800–2017. Major taxa studied: Mammals, birds, fish, and tree seedlings. Methods: Using published abundance data for 801 species, together with species range maps, we tested the ACH using three distance metrics in both environmental and geographical spaces with range and niche envelopes delineated using two different algorithms, totalling 12 different settings. We then evaluated the distance–abundance relationship using correlation coefficients (traditional approach) and mixed-effect models to reduce the effect of sampling noise on parameter estimates. Results: Similar to previous studies, correlation coefficients indicated an absence of effect of distance on abundance for all taxonomic groups and settings. In contrast, mixed-effect models highlighted relationships of various strengths and shapes, with a tendency for more theoretically supported settings to provide stronger support for the ACH. The relationships were however not consistent across taxonomic groups and settings, and were sometimes even opposite to ACH expectations. Main conclusions: We found mixed and inconclusive results regarding the ACH. These results corroborate recent findings, and suggest either that our ability to predict abundances from the location of populations within geographical or environmental spaces is low, or that the data used here have a poor signal-to-noise-ratio. The latter calls for further testing on other datasets using the same range of settings and methodological framework

    How to evaluate community predictions without thresholding?

    Get PDF
    Stacked species distribution models (S-SDM) provide a tool to make spatial predictions about communities by first modelling individual species and then stacking the modelled predictions to form assemblages. The evaluation of the predictive performance is usually based on a comparison of the observed and predicted community properties (e.g. species richness, composition). However, the most available and widely used evaluation metrics require the thresholding of single species' predicted probabilities of occurrence to obtain binary outcomes (i.e. presence/absence). This binarization can introduce unnecessary bias and error. Herein, we present and demonstrate the use of several groups of new or rarely used evaluation approaches and metrics for both species richness and community composition that do not require thresholding but instead directly compare the predicted probabilities of occurrences of species to the presence/absence observations in the assemblages. Community AUC, which is based on traditional AUC, measures the ability of a model to differentiate between species presences or absences at a given site according to their predicted probabilities of occurrence. Summing the probabilities gives the expected species richness and allows the estimation of the probability that the observed species richness is not different from the expected species richness based on the species' probabilities of occurrence. The traditional Sorensen and Jaccard similarity indices (which are based on presences/absences) were adapted to maxSorensen and maxJaccard and to probSorensen and probJaccard (which use probabilities directly). A further approach (improvement over null models) compares the predictions based on S-SDMs with the expectations from the null models to estimate the improvement in both species richness and composition predictions. Additionally, all metrics can be described against the environmental conditions of sites (e.g. elevation) to highlight the abilities of models to detect the variation in the strength of the community assembly processes in different environments. These metrics offer an unbiased view of the performance of community predictions compared to metrics that requiring thresholding. As such, they allow more straightforward comparisons of model performance among studies (i.e. they are not influenced by any subjective thresholding decisions).Peer reviewe

    Rarity types among plant species with high conservation priority in Switzerland

    Get PDF
    Abstract.: Broennimann O., Vittoz P., Moser D. and Guisan A. 2005. Rarity types among plant species with high conservation priority in Switzerland. Bot. Helv. 115: 95-108. We investigated the ecogeographic characteristics of 118 Swiss plant species listed as those deserving highest conservation priority in a national conservation guide and classified them into the seven Rabinowitz' rarity types, taking geographic distribution, habitat rarity and local population size into account. Our analysis revealed that species with high conservation priority in Switzerland mostly have a very restricted geographic distribution in Switzerland and generally occur in rare habitats, but do not necessarily constitute small populations and are generally not endemics on a global scale. Moreover, species that are geographically very restricted on a regional scale are not generally restricted on a global scale. By analysing relationships between rarity and IUCN extinction risks for Switzerland, we demonstrated that species with the highest risk of extinction are those with the most restricted geographic distribution; whereas species with lower risk of extinction (but still high conservation priority) include many regional endemics. Habitat rarity and local population size appeared to be of minor importance for the assessment of extinction risk in Switzerland, but the total number of fulfilled rarity criteria still correlated positively with the severity of extinction risk. Our classification is the first preliminary assessment of the relative importance of each rarity type among endangered plant species of the Swiss flora and our results underline the need to distinguish between a regional and a global responsibility for the conservation of rare and endangered specie

    Plant traits co-vary with altitude in grasslands and forests in the European Alps

    Get PDF
    Biological traits that are advantageous under specific ecological conditions should be present in a large proportion of the species within an ecosystem, where those specific conditions prevail. As climatic conditions change, the frequency of certain traits in plant communities is expected to change with increasing altitude. We examined patterns of change for 13 traits in 120 exhaustive inventories of plants along five altitudinal transects (520-3,100m a.s.l.) in grasslands and in forests in western Switzerland. The traits selected for study represented the occupation of space, photosynthesis, reproduction and dispersal. For each plot, the mean trait values or the proportions of the trait states were weighted by species cover and examined in relation to the first axis of a PCA based on local climatic conditions. With increasing altitude in grasslands, we observed a decrease in anemophily and an increase in entomophily complemented by possible selfing; a decrease in diaspores with appendages adapted to ectozoochory, linked to a decrease in achenes and an increase in capsules. In lowlands, pollination and dispersal are ensured by wind and animals. However, with increasing altitude, insects are mostly responsible for pollination, and wind becomes the main natural dispersal vector. Some traits showed a particularly marked change in the alpine belt (e.g. the increase of capsules and the decrease of achenes), confirming that this belt concentrates particularly stressful conditions to plant growth and reproduction (e.g. cold, short growing season) that constrain plants to a limited number of strategies. One adaptation to this stress is to limit investment in dispersal by producing capsules with numerous, tiny seeds that have appendages limited to narrow wings. Forests displayed many of the trends observed in grasslands but with a reduced variability that is likely due to a shorter altitudinal gradien

    Scenario-based assessment of future land use change on butterfly species distributions

    Get PDF
    Species distribution models (SDMs) are increasingly used to predict environmentally induced range shifts of habitats of plant and animal species. Consequently SDMs are valuable tools for scientifically based conservation decisions. The aims of this paper are (1) to identify important drivers of butterfly species persistence or extinction, and (2) to analyse the responses of endangered butterfly species of dry grasslands and wetlands to likely future landscape changes in Switzerland. Future land use was represented by four scenarios describing: (1) ongoing land use changes as observed at the end of the last century; (2) a liberalisation of the agricultural markets; (3) a slightly lowered agricultural production; and (4) a strongly lowered agricultural production. Two model approaches have been applied. The first (logistic regression with principal components) explains what environmental variables have significant impact on species presence (and absence). The second (predictive SDM) is used to project species distribution under current and likely future land uses. The results of the explanatory analyses reveal that four principal components related to urbanisation, abandonment of open land and intensive agricultural practices as well as two climate parameters are primary drivers of species occurrence (decline). The scenario analyses show that lowered agricultural production is likely to favour dry grassland species due to an increase of non-intensively used land, open canopy forests, and overgrown areas. In the liberalisation scenario dry grassland species show a decrease in abundance due to a strong increase of forested patches. Wetland butterfly species would decrease under all four scenarios as their habitats become overgrow

    Small to train, small to test: Dealing with low sample size in model evaluation

    Full text link
    editorial reviewedSample size is a key issue in species distribution modelling. While many studies focused on the relevance of sample size for model calibration, the importance of the size of the dataset used for model evaluation has received much less attention. Here, we highlight two previously published approaches to address the problem, and which are relatively simple to implement: the pooling evaluation and the implementation of null models. We discuss the importance of these or other potential approaches that are critical for model evaluation in rare species, which represent the bulk of biodiversity, and for which accurate models are most necessary in a conservation context
    corecore